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Metformin alters the insulin signaling pathway in ischemic cardiac
tissue in a swine model of metabolic syndrome
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Objective: The purpose of this study is to evaluate the effect of metformin on insulin signaling in ischemic
cardiac tissue in a swine model of metabolic syndrome.

Methods: Ossabaw miniswine were fed either a regular diet (Ossabaw control [OC]) or a hypercaloric diet (Os-
sabaw high cholesterol [OHC], Ossabaw high cholesterol with metformin [OHCM]). After 9 weeks, all animals
underwent placement of an ameroid constrictor to the left circumflex artery to induce chronic ischemia. OHC
animals were continued on a hypercaloric diet alone; the OHCM group was supplemented with metformin in
addition to the hypercaloric diet. Seven weeks after ameroid placement, myocardial perfusion was measured
and ischemic cardiac tissue was harvested for protein expression and histologic analysis.

Results: The OHC and OHCM groups had significantly higher body mass indices and serum insulin levels com-
pared with the OC group. There were no differences in myocardial perfusion in the chronically ischemic terri-
tories. In the OHC group, there was upregulation of both an activator of insulin signaling insulin receptor
substrate 1, and an inhibitor of insulin signaling phosphorylated insulin receptor substrate 2. In the OHCMgroup,
there was upregulation of activators of insulin signaling including phosphorylated adenosine monophosphate-
activated protein kinase a, protein kinase B, phosphorylated protein kinase B, mammalian target of rapamycin,
phosphorylated mammalian target of rapamycin, and phosphoinostitide 3-kinase, and upregulation of inhibitors
including phosphorylated insulin receptor substrate 1, phosphorylated insulin receptor substrate 2, and retinol
binding protein 4. Histologic analysis demonstrated increased expression of glucose transporter 1 at the plasma
membrane in the OHCM group, but there was no difference in cardiomyocyte glycogen stores among groups.

Conclusions:Metformin treatment in the context of metabolic syndrome and myocardial ischemia dramatically
upregulates the insulin signaling pathway in chronically ischemic myocardium, which is at the crossroads of
known metabolic and survival benefits of metformin. (J Thorac Cardiovasc Surg 2012;-:1-9)
Despite advances in treatment, diabetes mellitus still affects
25.8 million Americans and is a major cause of morbidity
and mortality in the United States.1 Patients with diabetics
often experience a group of metabolic derangements in-
cluding dyslipidemia, hypertension, and obesity (also
known as metabolic syndrome), which more than doubles
their risk of developing cardiovascular disease.2-5 A
central component in the development of type 2 diabetes
mellitus and metabolic syndrome is insulin resistance.6

One of the mainstay treatments of type 2 diabetes mellitus
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is metformin, an orally administered biguanide. Metformin
reduces blood glucose levels by reducing hepatic glucose
production and increasing peripheral glucose uptake.7

Metformin also has direct cardioprotective properties that
are independent of its antihyperglycemic effects. Epidemi-
ologic studies have shown that patients with type 2 diabetes
mellitus treated with metformin had reduced all-cause mor-
tality.8,9 In animal studies, metformin has been shown to
reduce infarct size and attenuate myocardial remodeling,
preserve myocardial function, limit cardiac hypertrophy,
and reduce the development of heart failure after
myocardial infarction.10

Studies have shown that the cardioprotective properties
of metformin are mediated by protein kinase B (AKT)
and adenosine monophosphate-activated protein kinase
(AMPK) by promoting cell survival during periods of ische-
mia.10 Interestingly, both AKTand AMPK are also key pro-
tein kinases in the insulin signaling cascade. Therefore, it is
prudent to investigate further the effects of metformin at the
junction of its cardioprotective and glucose lowering ef-
fects: the insulin signaling cascade. We developed a clini-
cally relevant swine model of metabolic syndrome and
chronic myocardial ischemia to investigate the effects of
metformin on the insulin signaling pathway in ischemic
myocardium.
ardiovascular Surgery c Volume -, Number - 1
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Abbreviations and Acronyms
ACC ¼ acetyl coenzyme A carboxylase
AKT ¼ protein kinase B
AMP ¼ adenosine monophosphate
AMPK ¼ adenosine monophosphate-activated

protein kinase
ATP ¼ adenosine triphosphate
CoA ¼ coenzyme A
FAS ¼ fatty acid synthase
FOX01 ¼ foxhead box 01
GLUT1 ¼ glucose transporter 1
GLUT4 ¼ glucose transporter 4
IRS ¼ insulin receptor substrate
MTOR ¼ mammalian target of rapamycin
OC ¼ Ossabaw control
OHC ¼ Ossabaw high cholesterol
OHCM ¼ Ossabaw high cholesterol with

metformin
PI3K ¼ phosphoinostitide 3-kinase
p-IRS ¼ phosphorylated insulin receptor

substrate
p-MTOR ¼ phosphorylated mammalian target of

rapamycin
RBP4 ¼ retinol binding protein 4

Evolving Technology/Basic Science Elmadhun et al

E
T
/B
S

METHODS
Animal Model

Twenty-four intact male Ossabaw miniswine (Purdue Ossabaw Facility,

Indiana University, Indianapolis, Ind) were divided into 3 groups according

to diet at 6 weeks of age. The control group was fed 500 g/day of regular

chow (Ossabaw control [OC], n ¼ 8). The high-cholesterol animals (Ossa-

baw high cholesterol [OHC], n¼ 8) were fed 500 g/day of high-cholesterol

chow consisting of 4% cholesterol, 17.2% coconut oil, 2.3% corn oil,

1.5% sodium cholate, and 75% regular chow (Sinclair Research, Colum-

bia, Mo). High-cholesterol metformin animals (Ossabaw high cholesterol

with metformin [OHCM], n ¼ 8) were also fed high-cholesterol chow. Af-

ter 9 weeks of diet initiation, all animals underwent surgical placement of

an ameroid constrictor to induce chronicmyocardial ischemia (see Surgical

Interventions). Postoperatively, the OHCM group was supplemented with

500 mg metformin orally twice daily and all animals were continued on

their respective diet. Seven weeks after ameroid constrictor placement,

all animals were weighed and underwent functional cardiac and hemody-

namic measurements, euthanasia, and cardiac tissue harvest. All animals

were observed to ensure complete consumption of food and supplement,

had unlimited access to water, and were housed in a warm, nonstressful

environment for the duration of the experiment.

Surgical Interventions
Anesthesia. Anesthesia was inducedwith an intramuscular injection of

telazol (4.4 mg/kg). Animals were intubated endotracheally and ventilated

mechanically at 12 to 20 breaths per minute, and general anesthesia was

maintained with a gas mixture of oxygen at 1.5 to 2 L/minute and isoflurane

at 0.75% to 3.0% concentration.

Ameroid constrictor placement. Animals were given a single

dose of intravenous enrofloxacin 5 mg/kg for antibiotic prophylaxis, and
2 The Journal of Thoracic and Cardiovascular Surger
general anesthesia was induced and maintained. Animals were prepped

and draped in the usual sterile fashion. The heart was exposed through

a left minithoracotomy and pericardiotomy. The left atrial appendage

was retracted and the left circumflex artery was dissected at the takeoff

of the left main coronary artery. The circumflex artery was occluded for

2 minutes, during which time 5 mL isotope-labeled gold microspheres

(BioPhysics Assay Laboratory, Worcester, Mass) was injected into the

left atrium to establish shadow labeling of the ischemic myocardium.

The ameroid constrictor was placed around the left circumflex artery

(Research Instruments SW, Escondito, Calif). The pericardium was reap-

proximated loosely followed by a layered closure of the surgical incision.

Postoperative pain was controlled with a single dose of intramuscular

Buprenorphine (0.03 mg/kg) and a 72-hour Fentanyl patch (4 mg/kg). All

animals received 325 mg aspirin daily starting 1 day preoperatively and

continuing for a total of 5 days for prophylaxis against thromboembolic

events. All animals continued perioperative antibiotics of enrofloxacin 68

mg orally daily for 5 days.

Cardiac harvest. Under general anesthesia, coronary angiography of

the left and right coronary circulation was performed as described previ-

ously.11 Complete occlusion of the left circumflex artery was confirmed an-

giographically in all cases. A blinded interventional cardiologist then

assessed the TIMI, Rentrop, and Blush scores. The heart was exposed

via a median sternotomy. Global and regional myocardial function and con-

tractility were measured by placing sonomicrometer crystals (Sonometrics

Corporation, Ontario, Canada) in the normally perfused left ventricle as de-

scribed previously.11 Pressure catheters were also placed in the descending

aorta through a right femoral sheath and into the left ventricle through an

apical puncture.11 After microsphere injection (see Myocardial Perfusion),

animals were euthanized by exsanguination, and chronically ischemic

myocardial samples in the left circumflex territory were collected for fur-

ther analysis. The Institutional Animal Care and Use Committee of the

Rhode Island Hospital approved all experiments. Animals were cared for

in compliance with the Principles of Laboratory Animal Care formulated

by the National Society for Medical Research and the Guide for the Care

and Use of Laboratory Animals.12

Serologic Studies
Blood samples were drawn from the jugular vein prior to euthanasia and

tissue harvest for insulin measurement. The chemistry laboratory at the

Rhode Island Hospital, Providence, RI, analyzed the serum samples.

Myocardial Perfusion
Myocardial perfusion was measured by injecting gold isotope-labeled

microspheres (Biophysics Assay Laboratory) into the left atrium at the

time of ameroid placement during a brief left circumflex artery occlusion.

At the final operation, prior to cardiac harvest, lutetium microspheres were

injected while simultaneously withdrawing blood from a femoral artery

catheter. Samples of the left ventricle and blood were dried at 60�C for

>48 hours, and microsphere density was quantified with a gamma counter

after exposure to neutron bean radiation (Biophysics Assay Laboratory).

Myocardial blood flow to each sample was calculated using the following

equation:

Blood flow ¼ Withdrawal rate

Tissue weight
3
Tissue microsphere count

Blood microsphere count

Protein Expression
Forty micrograms of the radio-immunoprecipitation assay (Boston Bio-

Products, Ashland, Mass) soluble fraction of myocardial lysates from the

chronically ischemic territory were fractionated by SDS-PAGE using 3%

to 8% Tris-acetate gel (NuPage Novex Mini Gel; Invitrogen, Carlsbad,

Calif) for molecular weight targets> 100 kDa and 4% to 12% Bis-Tris
y c - 2012



FIGURE 1. Comparative BMI and serum insulin levels in Ossabaw control (OC), Ossabaw high cholesterol (OHC), Ossabaw high cholesterol with met-

formin (OHCM). *Bonferroni P<.05. **Bonferroni P<.01. BMI, Body mass index.
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gels formolecular weight targets<100 kDa (NuPageNovexMiniGel). The

proteinwas then transferred to polyvinylidene difluoridemembranes (Milli-

pore, Bedford, Mass) and incubated overnight at 4�C with primary

antibodies at dilutions recommended by themanufacturer against phosphor-

ylated insulin receptor substrate 1 (p-IRS1) (Ser 612), IRS1, IRS2, phos-

phorylated AKT (Thr 473), AKT, phosphorylated AMPKa (Thr 172),

AMPKa, phosphorylated forkhead box 01 (FOX01) (Ser 256), FOX01,

phosphorylated mammalian target of rapamycin (p-MTOR) (Ser 2481),

MTOR, phosphoinostitide 3-kinase (PI3K), acetyl coenzyme A (CoA) car-

boxylase (ACC), phosphorylatedACC (Ser 79), S6, phosphorylated S6 (Ser

235/236) (all fromCell Signaling, Danvers,Mass); retinol binding protein 4

(RBP4;Abnova, Taipei, Taiwan); p-IRS2 (Ser 731) and glucose transporter 1

(GLUT1; from Abcam, Cambridge, Mass); Deptor (Sigma-Aldrich,

St. Louis,Mo); and fatty acid synthase (FAS) (Epitomics, Burlingame,Calif).

Membranes were incubated with the appropriate horseradish peroxidase-

linked secondary antibody for 1 hour at room temperature (Jackson Immu-

noResearch, West Grove, Pa). Immune complexes were visualized with

enhanced chemiluminescence and images were captured with a digital cam-

era system(G-Box;Syngene,Cambridge,UK).Banddensitometrywasquan-

tified as arbitrary light units using Image-J software (National Institutes

of Health, Bethesda, Md). All membranes were probed with glyceraldehyde

3-phosphate dehydrogenase (cell signaling) to correct for loading error.

Immunohistochemical Analysis
Frozen myocardium from the chronically ischemic territory was sec-

tioned (thickness, 12 mm) and fixed in 10% formalin for 10 minutes.

Sections were blocked with 1% bovine serum albumin in phosphate-

buffered saline for 1 hour at room temperature and incubated with

anti-GLUT 1 antibody (Abcam) overnight at 4�C. Sections were then

incubated with DyLight 549-conjugated antirabbit antibody (Jackson

ImmunoResearch) for 45 minutes, then mounted with Vectashield

with 40,6-diamidino-2-phenylindole (Vector Laboratories, Burlingame,

Calif). Images were captured at 203 magnification with a Nikon E800

Eclipse microscope (Nikon, Tokyo, Japan) at the same exposure. Bright-

ness was enhanced identically in all images to display immunofluorescence

optimally (Adobe Photoshop, San Jose, Calif).

Histology
Periodic acid–Schiff staining was performed on frozen tissue sections of

the chronically ischemicmyocardium by the Pathology and Histology Core

Facility at Rhode Island Hospital. Periodic acid–Schiff images were

obtained using Aperio ScanScope technology (Vista, Calif) and captured

at 203 magnification.

Data Analysis
All results are reported as mean � standard error of the mean. A 1-way

analysis of variancewas used to compare themeans amonggroups, followed
The Journal of Thoracic and C
by a post hoc Bonferroni test to compare the means between groups using

GraphPad Prism 5.0 software (GraphPad Software, Inc, San Diego, Calif).
RESULTS
Animal Model
All animals included in the analysis survived the entire

experiment. One animal in the OC group and 1 in the
OHC group died postoperatively, the first 8 days postoper-
atively and the second 2 days postoperatively. Necropsy
did not reveal a clear cause of death, and it was assumed
the animals died after an acute arrhythmia leading to sudden
cardiac death. Another animal in the OHCM group was eu-
thanized after a prolonged myocardial infarction at the time
of ameroid placement. The animals that did not survive to
completion of the experiment were excluded from analysis
and replaced with new animals. At the time of the final op-
eration, animals wereweighed and the body mass index was
calculated. Although all animals were obese, the OHC and
OHCM groups had significantly higher body mass indexes
compared with the OC group (35.09 kg/m2, 34.97 kg/m2,
and 31.91 kg/m2, respectively). Serum insulin levels in
the OC group were significantly lower compared with the
OHC and OHCM groups (3.04 mU/L, 8.08 mU/L, and
7.16 mU/L, respectively; Figure 1).
There was no difference in the TIMI score of coronary

blood flow, Rentrop scores of the left and right coronary cir-
culation, or Blush scores between any of the groups (data
reported previously by Lassaletta and colleagues11). Inter-
estingly, by gross observation, there was no or minimal sub-
endocardial signs of infarction. Thus, this model is one of
chronic ischemia and not infarction.
Myocardial Perfusion
Myocardial perfusion to the chronically ischemic terri-

torywasmeasured at the time of the final operation and there
were no differences in flow in the OC, OHC, and OHCM
groups (0.50 � 0.04 mL/min/g, 0.58 � 0.08 mL/min/g,
and 0.67 � 0.15 mL/min/g, respectively; analysis of vari-
ance, P ¼ .611). Lassaletta and colleagues11 previously re-
ported that in this animal model there was significant
ardiovascular Surgery c Volume -, Number - 3



TABLE 1. Western blot analysis of OHC and OHCM protein

expression in ischemic myocardium

OHC OHCM

ANOVA

P value

Bonferroni

P value

IRS1 1.39 � 0.10 1.29 � 0.15 .048 <.05*

p-IRS1 (Ser 612) 1.43 � 0.10 1.74 � 0.31 .003 <.01y
IRS2 1.11 � 0.07 1.25 � 0.08 .289 >.05

p-IRS2 (Ser 731) 1.08 � 0.50 1.43 � 0.05 .002 <.01y,<.05z
AMPKa 0.93 � 0.11 0.95 � 0.11 .944 >.05

p-AMPKa

(Thr 172)

0.98 � 0.078 30.68 � 2.09 <.0001 <.001yz

AKT 1.54 � 0.38 2.26 � 0.35 .030 <.05y
p-AKT (Ser 473) 1.04 � 0.15 14.02 � 1.46 <.0001 <.001yz
FOX01 1.48 � 0.15 1.59 � 0.13 .004 <.05*,<.01y
p-FOX01 (Ser 256) 2.45 � 0.61 3.19 � 0.60 .020 <.05y
MTOR 1.40 � 0.27 2.54 � 0.19 .0003 <.001y,<.01z
p-MTOR

(Ser 2481)

1.59 � 0.36 6.96 � 1.03 <.0001 <.001yz

PI3K 1.44 � 0.07 1.34 � 0.17 .003 <.01*,<.05y
RBP4 1.67 � 0.17 2.70 � 0.58 .004 <.01y
GLUT4 0.85 � 0.12 1.06 � 0.22 .629 >.05

ACC 0.77 � 0.08 0.94 � 0.17 .37 >.05

p-ACC (Ser 79) 0.97 � 0.05 1.02 � 0.10 .69 >.05

FAS 0.82 � 0.16 1.03 � 0.13 .42 >.05

S6 1.08 � 0.09 0.95 � 0.06 .38 >.05

p-S6 (Ser 235/236) 0.98 � 0.07 0.59 � 0.07 .01 <.05y,<.05z
Deptor 1.09 � 0.03 1.21 � 0.05 .01 <.01y
OHC, Ossabaw high cholesterol; OHCM, Ossabaw high cholesterol with metformin;

ANOVA, analysis of variance; IRS1, insulin receptor substrate 1; IRS2, insulin recep-

tor substrate 2; p-IRS1, phosphorylated insulin receptor substrate 1; p-IRS2, phos-

phorylated insulin receptor substrate 2; AKT, protein kinase B; p-AKT,

phosphorylated protein kinase B; MTOR, mammalian target of rapamycin;

p-MTOR, phosphorylated mammalian target of rapamycin; AMPK, adenosine

monophosphate-activated protein kinase; p-AMPK, phosphorylated adenosine mono-

phosphate-activated protein kinase; FOX01, forkhead box 01; p-FOX01, phosphory-

lated foxhead box 01; PI3K, phosphoinostitide 3-kinase; RBP4, retinol binding

protein 4; GLUT4, glucose transporter 4; ACC, acetyl coenzyme A carboxylase;

p-ACC, phosphorylated acetyl coenzyme A carboxylase; FAS, fatty acid synthase.

Protein expression in ischemic myocardium involved in the insulin signaling, fatty

acid synthesis, and MTOR pathway measured by immunoblotting. Data are provided

as fold change � standard error of the mean compared with Ossabaw control (OC).

*P value OC vs OHC. yP value OC vs OHCM. zP value OHC vs OHCM.
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decrease in the developed left ventricular pressure in the OC
versus the OHC group (56 mmHg vs 98 mmHg), and a sig-
nificant increase in the MAP in the OHC group versus the
OC and OHCM groups (112 mm Hg vs 85 mm Hg and 68
mmHg, respectively). There was no difference in measured
global or regional left ventricular contractility.11 Also, there
was no difference in microvessel reactivity to endothelium-
dependent vasodilator adenosine diphosphate, but there was
a significant increase in microvessel reactivity to
endothelium-independent vasodilator SNP in the OHC and
OHCM groups.11 Despite these differences, there was no
change in the measured myocardial perfusion in this study.

Protein Expression
Western blot analysis in the ischemic territories demon-

strated upregulation in IRS1, FOX01, and PI3K in the
OHC group compared with the OC group. There was a sig-
nificant increase in expression of p-IRS1 (Ser 612), p-IRS2
(Ser 731), phosphorylated AMPKa (Thr 172), AKT,
phosphorylated AKT (Ser 473), FOX01, phosphorylated
FOX01 (Ser 256), MTOR, p-MTOR (Ser 2481), PI3K,
RBP4, Deptor, and pS6 (Ser 235/236) in the OHCM group
compared with the OC group. There was also a significant
increase in p-IRS2 (Ser 731), phosphorylated AMPKa
(Thr 172), phosphorylated AKT (Ser 473), phosphorylated
S6 (Ser 235/236), MTOR, and p-MTOR (Ser 2481) expres-
sion in the OHCM group compared with the OHC group
(Table 1 and Figure 2).

Histologic Analysis
Immunohistochemical staining for GLUT1 demonstrated

significantly increased membrane-bound GLUT1 expres-
sion in the OHC and OHCM groups compared with the
OC group (2.19, 3.76, and 1.00 integrated optical density
expressed as fold change with respect to OC, respectively).
Periodic acid–Schiff staining was homogenous and similar
in all 3 groups (Figure 3).

DISCUSSION
In previous animal studies, we have established that Os-

sabaw miniswine fed a hypercaloric/hypercholesterolemic
diet develop metabolic syndrome, including dyslipidemia,
hypertension, and glucose intolerance.11 In this study, all
animals were obese, and the OHC and OHCM groups had
significantly higher body mass indices compared with the
OC group, which is expected because the hypercaloric
diet provides 24% more calories than regular chow. The
OHC and OHCM groups also had significantly higher se-
rum insulin levels, which is consistent with our previous
studies in which animals fed a hypercaloric diet develop hy-
perinsulinemia. The addition of metformin did not alter the
measured insulin levels significantly.

This study demonstrates that metformin supplementation
in a swine model of metabolic syndrome alters significantly
4 The Journal of Thoracic and Cardiovascular Surger
the insulin signaling pathway in ischemic myocardium. The
insulin signaling cascade is initiated when insulin binds the
insulin receptor, resulting in tyrosine phosphorylation of
IRS, which activates IRS and allows it to bind to PI3K. In
turn, PI3K activates AKT, which triggers the translocation
of intracellular glucose transporter 4 (GLUT4) vesicles to
the plasma membrane. Once docked at the plasma mem-
brane, GLUT4 takes up glucose, improves glucose utiliza-
tion, and reduces serum glucose levels.13 In a well-fed
state, AMPK and MTOR are activated, which further prop-
agate the insulin signaling pathway (Figure 4).

Insulin receptor substrate 1 and IRS2 are widely ex-
pressed, with IRS1 as the predominant isoform in muscle
and IRS2 found mainly in the liver, muscle, and adipose tis-
sue.14 In this study, there was upregulation of IRS1 in the
OHC group and upregulation of the p-IRS2 (Ser 731) in
y c - 2012



FIGURE 2. Protein expression in ischemic myocardium. The ratio of phosphorylated to total protein expression calculated for proteins in the insulin sig-

naling pathway. *BonferroniP<.001. IRS1, Insulin receptor substrate 1; IRS2, insulin receptor substrate 2; pIRS1, phosphorylated insulin receptor substrate

1; pIRS2, phosphorylated insulin receptor substrate 2; AKT, protein kinase B; pAKT, phosphorylated protein kinase B; MTOR, mammalian target of rapa-

mycin; pMTOR, phosphorylated mammalian target of rapamycin; AMPK, adenosine monophosphate-activated protein kinase; pAMPK, phosphorylated

adenosine monophosphate-activated protein kinase; FOX01, foxhead box 01; pFOX01, phosphorylated foxhead box 01; OC, Ossabaw control; OHC, Os-

sabaw high cholesterol; OHCM, Ossabaw high cholesterol with metformin.
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the OHCM group. Although tyrosine phosphorylation acti-
vates IRS, serine phosphorylation by insulin receptor kinase
inhibits IRS, thereby inhibiting insulin signal transduction.
Analysis of phosphorylated-to-total IRS1 and -IRS2 ratios
were not significant among groups, and despite upregula-
tion of p-IRS2 in the OHCM group, insulin signaling was
not inhibited, as evidenced by the upregulation of down-
stream targets including PI3K and AKT. Phosphoinostitide
3-kinase expression was upregulated in both the OHC and
OHCM groups compared with the OC group; however,
only the OHCM group had increased expression of its
downstream target: AKT. The phosphorylated AKT (Ser
473)-to-AKT ratio was also markedly elevated in the
OHCM group, suggesting that metformin either increases
phosphorylated AKT phosphorylation or decreases the ac-
tivity of phosphatases. Similarly, the dramatic upregulation
of p-MTOR in the OHCM group suggests that metformin
augments the intrinsic catalytic activity in MTOR, resulting
in increased autophosphorylation at Ser 2481 and enhanced
insulin signaling.
The Journal of Thoracic and C
Interestingly, although there was a substantial upregula-
tion of AMPK, there was also upregulation of MTOR and
p-MTOR despite the fact that AMPK is a known inhibitor
of MTOR. Ribosomal protien S6 is a downstream target
of MTOR. When MTOR is activated, it leads to phosphor-
ylation of S6 and is considered a marker for MTOR activity.
This study demonstrated that although S6 expression was
unchanged, there was a significant downregulation of pS6
expression in the OHCMgroup. Deptor is another potent in-
hibitor of MTOR activity, and there was an increase in Dep-
tor expression in the OHCM group. Taken together, these
results suggest that although MTOR and p-MTOR expres-
sion are increased in the OHCM group, MTOR activity is
decreased likely because of Deptor- and AMPK-mediated
MTOR inhibition.
AKTalso phosphorylates and inactivates FOX01, a mem-

ber of the forkhead box transcription factor family, which
promotes gluconeogenesis in a fasted state. In a well-fed
state, when insulin levels are high, phosphorylated FOX01
is excluded from the nucleus, thereby reducing hepatic
ardiovascular Surgery c Volume -, Number - 5



FIGURE 3. Histologic analysis of ischemic cardiac tissue. A, Immunofluorescence staining for GLUT1. Red staining represents GLUT1. B, Periodic acid–

Schiff staining for cardiomyocyte glycogen stores. C, GLUT1 density analysis. *Bonferroni P<.01. **Bonferroni P<.001. OC, Ossabaw control; OHC,

Ossabaw high cholesterol; OHCM, Ossabaw high cholesterol with metformin; GLUT1, glucose transporter 1; PAS, periodic acid-Schiff.
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glucose production.15 Both the OHC and OHCM groups
had elevated FOX01 and phosphorylated FOX01 levels,
suggesting the hypercholesterolemic diet and elevated base-
line insulin levels signaled the phosphorylation and inacti-
vation of FOX01.

One of the keymechanisms of action of metformin is me-
diated by AMPK activation altering the adenosine mono-
phosphate (AMP)-to-adenosine triphosphate (ATP) ratio
in the liver, which effectively inhibits hepatic glucose pro-
duction.16 Metformin-mediated increases in AMP binds
AMPK and exposes the catalytic domain to the AMPK
kinase, which facilitates AMPK phosphorylation and subse-
quent activation.17 In this study, the OHCM group had
a 30-fold increase in phosphorylated AMPK expression,
which is consistent with the known mechanism of action
of metformin. Despite the marked upregulation of AMPK,
this did not result in the expected metabolic shift from ma-
lonyl CoA to acetyl CoA and the resultant shift to fatty acid
6 The Journal of Thoracic and Cardiovascular Surger
metabolism. There was no difference in ACC, phosphory-
lated ACC, or FAS expression; therefore, it does not appear
that the increased expression of AMPK impacted fatty acid
synthesis.

Transmembrane glucose transport is mediated by glu-
cose transporter family GLUT. In the heart, GLUT1 and
GLUT4 are the primary glucose transporters, with
GLUT1 responsible for basal glucose transport and
GLUT4 responsible for insulin-activated glucose transport.
GLUT4 is stored in transport vesicles and translocates to
the plasma membrane in an inducible fashion on insulin
stimulation or with increased cardiac contractility.18

GLUT4 translocation to the plasma membrane can increase
glucose uptake swiftly into the cell. Of note, GLUT1 is also
stored in transport vesicles, and translocation to the plasma
membrane is also dependent on insulin signaling and con-
traction.19 Animal studies have shown that under condi-
tions of hypoxia and altered AMP-to-ATP ratio, AMPK
y c - 2012



FIGURE 4. Insulin signaling transduction. The effects of insulin on glucose uptake and apoptosis/survival presented here are discussed in detail in the text.

MTP, Mitochondrial transition pore; FKHR, forkhead transcription factors; IRS, insulin receptor substrate; AKT, protein kinase B;MTOR,mammalian target

of rapamycin; AMPK, adenosine monophosphate-activated protein kinase; RBP4, retinol binding protein 4; AMP, adenosine monophosphate; IR, insulin

receptor; p13k, phosphoinostitide 3-kinase; PIP2, phosphatidylinostitol biphosphate; PIP3, phosphatidylinostitol triphospate; PDK1, 3-phosphoinosti-

tide–dependent kinase 1; GLUT4, glucose transporter 4; GLUT1, glucose transporter 1; NFkB, nuclear factor kappa B; BAD, Bcl-2–associated death pro-

moter; BAX, Bcl-2–associated X protien; FOX01, foxhead box 01.
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is activated, resulting in increased GLUT1-mediated glu-
cose transport. Adenosine monophosphate-activated pro-
tein kinase activation unmasks preexisting GLUT1
transporters on the plasma membrane, which substantially
enhances glucose transport.20 The increase in glucose
transport does not correlate with changes in the plasma
membrane levels of GLUT1.21

Interestingly, although metformin upregulated insulin
signaling, in this study there was no change in GLUT4 ex-
pression in the OHC and OHCM groups compared with the
OC group. However, the OHCM group demonstrated dra-
matic upregulation of GLUT1 expression at the plasma
membrane compared with the OHC and OC groups, result-
ing, perhaps, from the combination of insulin and
AMPK-mediated GLUT1 translocation to the plasma mem-
brane. Alternatively, the increased GLUT1 expression at the
plasma membrane may be the result of decreased endocyto-
sis of GLUT1 vesicles back to the cytosol. Previous studies
have examined the role of GLUT1-mediated glucose uptake
in the prevention of apoptosis and have shown that overex-
pression of GLUT1 prevented hypoxia-induced apoptosis
independent of extracellular glucose concentration.22 Given
the findings in this study, GLUT1 warrants further investi-
gation because it may be yet another mechanism by which
metformin is cardioprotective.
The Journal of Thoracic and C
Retinol binding protein 4 is a protein secreted by adipo-
cytes that inhibits PI3K-mediated insulin signaling and in-
creases hepatic glucose production. Animal and human
studies have shown that elevated serum RBP4 levels cor-
relate closely with type 2 diabetes mellitus and other
insulin-resistant states.23 In this study, myocardial RBP4
expression was increased in both the OHC and OHCM
groups; however, only the OHCM group was significant.
Interestingly, the OHCM group demonstrated the highest
expression of RBP4 and its target PI3K, suggesting that,
perhaps, the metformin-mediated insulin signaling propa-
gation outweighs the inhibitory effect of RBP4 on PI3K.
Another possibility is that RBP4 is not as effective in
the myocardium in inhibiting PI3K as it is in its primary
tissue targets—namely, skeletal muscle, adipose, and liver.
Although cardioprotective mechanism of metformin is

not understood completely, it appears that AMPK and
AKT are important in mediating these effects. Previous
studies have shown that metformin-induced PI3K-AKT up-
regulation inhibits mitochondrial permeability transition
pore during periods of ischemia, thereby limiting reperfu-
sion injury.24 Phosphoinostitide 3-kinase and AKT are inte-
gral protein kinases in the reperfusion injury salvage kinase
family that promote cell survival and cardioprotection after
an ischemic insult. Adenosine monophosphate-activated
ardiovascular Surgery c Volume -, Number - 7
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protein kinase also activates the reperfusion injury salvage
kinase pathway and initiates ischemic preconditioning.10

Metformin-mediated AMPK activation has also been
shown to increase ATP generation and attenuates cardio-
myocyte apoptosis.17 Thus, metformin effectively precon-
ditions the heart against ischemia–reperfusion injury by
activating AMPK. Our findings demonstrate that chronic
treatment with metformin in the context of metabolic syn-
drome and myocardial ischemia dramatically upregulate
insulin signaling, which is at the crossroads of known
metabolic and survival benefits of metformin.
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Discussion
Dr Harold L. Lazar (Boston, Mass). I enjoyed your presenta-

tion and thank you for allowing me to see the manuscript in ad-
vance. I just have a couple of small questions to ask: How did
you choose the dose of metformin? Five hundred milligrams fed
orally twice a day is considered a smaller dose. Do you think there
is any dose–response relationship with what you saw?

Dr Elmadhun. We chose that dose based on human dosing.
And actually, these animals are smaller—they’re about 30 kg—
and so we anticipate that these levels would be synonymous
with what we find in humans.

Dr Lazar. I’m also interested—. Did you think about giving the
metformin prior to the ischemia for a period of time? I’m just won-
dering if it would have been interesting to see what the signaling
pathways, the expression of GLUT4, might have been increased
if you had given it prior to performing the period of ischemia.

Dr Elmadhun. Certainly, that would be interesting to look at
in future studies–to administer metformin prior to chronic ische-
mia or in an acute ischemia-reperfusion model. In other studies,
that would be interesting to do, too. As opposed to a chronic
model of ischemia, as the prior speakers discussed, an acute re-
perfusion injury would also be an interesting thing to look at as
well.

Dr Lazar. Have you also considered looking at the effects of
metformin in other cardioprotective agents such as endothelial ni-
tric oxide synthase, which is also mediated through many of these
pathways?

Dr Elmadhun. Yes. Actually, I just presented that data at the
Atherosclerosis, Thrombosis, Vascular Biology last week, and
we did find that there were other cardioprotective mechanisms
by increasing cell protective proteins and also reduction or inhibi-
tion of apoptosis-related proteins. We did find that there was upre-
gulation of phosphorylated endothelial nitric oxide synthase in the
ischemic territories.

Dr Lazar.And finally, did you look at any changes in either he-
modynamic function or cardiac function contractility in this
model?

Dr Elmadhun.We did. We looked at contractility and hemody-
namic parameters, and we did not find any differences among
groups.

Dr Thomas K. Waddell (Toronto, Ontario, Canada). I would
like to ask you a question about study design. I am sure it is
y c - 2012
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expensive to do these kinds of studies, but I was really struck by the
figure where you showed activation of the AMPK in the animals
that received metformin where there was actually relatively little
difference between the normal animals and the metabolic syn-
drome animals. What would you think, or maybe other people
have already examined it, would be the effect of metformin on
animals without metabolic syndrome?
The Journal of Thoracic and C
Dr Elmadhun. Previous studies have looked at this—looking at
just animals with a regular diet and supplemented with metformin
to prove the fact that patients don’t need to have diabetes mellitus
with metabolic syndrome and tolerate metformin—and they have
found that one of the mechanisms is to trick cells into believing
that they are starved and increasing the AMP-to-ATP ratio, which
thereby activates AMPK.
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000 Metformin alters the insulin signaling pathway in ischemic cardiac tissue in
a swine model of metabolic syndrome
Nassrene Y. Elmadhun, MD, Antonio D. Lassaletta, MD, Louis M. Chu, MD, and Frank W. Sellke,

MD, Providence, RI

Metformin treatment in the context of metabolic syndrome and myocardial ischemia dramatically

upregulates the insulin signaling pathway in chronically ischemic myocardium, which is at the

crossroads of known metabolic and survival benefits of metformin.
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